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Abstract
Decoherence of quantum information of qubits is investigated under the
influence of the non-Markovian quantum channel, where the correlation time of
reservoir variables takes a finite value. Degradation of purity, distinguishability
and entanglement of qubit states are evaluated. It is found that the non-
Markov effect makes the coherence time of quantum information longer than
that obtained for the Markovian quantum channel. Furthermore, the quantum
teleportation and quantum dense coding of qubits are considered under the
influence of non-Markov channels. The fidelity between teleported and original
states and the Holevo capacity are obtained.

PACS numbers: 03.67.Hk, 03.67.Mn, 03.65.Yz

1. Introduction

There have been considerable advances in the field of quantum information sciences [1–3].
Among others, quantum information processing is essential in quantum cryptography, quantum
communication and quantum computing. These are important not only in their useful
aspect of applications but also in their relevance to basic principles of quantum mechanics.
However, quantum mechanical systems are quite delicate in the sense that noises due to their
environmental fluctuations give rise to loss of information called decoherence. That is, the
quantum systems inevitably suffer losses of purity, indistinguishable property and degree of
entanglement from the quantum and thermal noises due to the environment. Effects of noises
are treated by several methods ranging from phenomenological description to microscopic
theory. In the phenomenological treatments [4–9], the loss of coherence is characterized
by several energy and phase relaxation times, for instance, they are the longitudinal and
the transverse relaxation times of the Bloch equations. These phenomenological methods are
extended to treat the dynamical effects of environment in terms of stochastic processes, typical
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examples of which are the Gauss–Markov and the two-state jump Markov (random telegram)
processes. In the microscopic level of description, the environment itself is considered to be
a quantum system with quantum mechanical reservoir variables which are to be eliminated,
for examples, by the method of projection operators [10–12] or by the path integral method
[13]. Although in many cases, the Markovian approximation is assumed when the projection
operator method is applied; it has recently been shown that the non-Markovian effect plays an
important role in the relaxation processes [14–19].

The present authors have recently considered the non-equilibrium dynamics of quantum
information by means of the phenomenological method [9] and the stochastic method [20].
The Bloch channel and the Kubo–Anderson channel of qubits have been introduced and
their properties have been investigated in detail [9, 20]. In this paper, we will investigate
decoherence of quantum information under the influence of a thermal reservoir, using the
microscopic approach which assumes a system–reservoir interaction and applied the projector
operator method to eliminate the reservoir variables. In particular, we pay our attention to
the non-Markovian effect of the thermal reservoir, where the correlation time of reservoir
variables is assumed to take a finite value. This paper is organized as follows. In section 2, we
derive a non-Markovian quantum channel of qubits that becomes the well-known Markovian
quantum channel in the limit that the correlation time reduces to zero. In sections 3 and 4, we
investigate the degradation of purity, distinguishability and entanglement of qubit states under
the influence of the non-Markovian quantum channel. The results show that the non-Markovian
effect suppresses their degradation. In section 5, we consider the quantum teleportation of
qubits and calculate the fidelity to show how faithfully a qubit state is teleported. In section 6,
we investigate the transmission of classical information in the quantum dense coding of qubits.
We obtain the Holevo capacity and compare it with the Shannon mutual information by the
Bell measurement. We give concluding remarks in section 7.

2. Non-Markovian quantum channel of qubits

This section derives the non-Markovian quantum channel of qubits by means of the projection
operator method [10–12]. A quantum state Ŵ (t) of a single qubit and reservoir–system is
subject to the Liouville–von Neumann equation

∂

∂t
Ŵ (t) = − i

h̄
[ĤQ + ĤQR + ĤR, Ŵ (t)] (1)

where ĤQ and ĤR are the Hamiltonians of a single qubit and reservoir and ĤQR is the
Hamiltonian between them. We assume that the interaction Hamiltonian ĤQR is given by

ĤQR = h̄λ(σ̂+R̂ + σ̂−R̂†) (2)

where σ̂± = σ̂x ± iσ̂y with σ̂k (k = x, y, z) being the Pauli matrix and R̂ stands for some
reservoir operator. When we use the projection operator method to eliminate the reservoir
operators from equation (1), we can obtain the time-convolutionless quantum master equation
of the qubit up to the second order with respect to the coupling constant λ in the interaction
picture [10–12]
∂

∂t
ρ̂(t) = φ∗

+−(t)[σ̂+, ρ̂(t)σ̂−] + φ+−(t)[σ̂+ρ̂(t), σ̂−]

+ φ∗
−+(t)[σ̂−, ρ̂(t)σ̂+] + φ−+(t)[σ̂−ρ̂(t), σ̂+] (3)

where ρ̂(t) = TrR Ŵ(t) is the reduced density operator of the single qubit. The functions
φ+−(t) and φ−+(t) are given by

φ+−(t) = λ2
∫ t

0
dτ e−iωQτ 〈R̂†(τ )R̂(0)〉R (4)
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φ−+(t) = λ2
∫ t

0
dτ eiωQτ 〈R̂(τ )R̂†(0)〉R (5)

where h̄ωQ is the energy difference between the two levels of the qubit and 〈· · ·〉R stands
for the average value in the thermal equilibrium of the reservoir. In the Markovian limit, the
functions φ+−(t) and φ−+(t) are replaced with φ+−(∞) and φ−+(∞) in equation (3).

To determine the quantum master equation (3), we must find the functions φ+−(t) and
φ−+(t) given by equations (4) and (5). This is equivalent to fixing the model of the thermal
reservoir. In this paper, we assume that the correlation functions of the reservoir variables
decay exponentially with the relaxation time τR , that is

λ2〈R̂†(t)R̂(0)〉R = 1

τR

G+− eiωRt−t/τR (6)

λ2〈R̂(t)R̂†(0)〉R = 1

τR

G−+ e−iωRt−t/τR . (7)

Substituting these equations into equations (4) and (5), we can obtain the functions φ+−(t) and
φ−+(t)

φ+−(t) = G+−
1 − exp(−(1 + i(ωQ − ωR)τR)t/τR)

1 + i(ωQ − ωR)τR

(8)

φ−+(t) = G−+
1 − exp(−(1 − i(ωQ − ωR)τR)t/τR)

1 − i(ωQ − ωR)τR

(9)

which are formally rewritten as

φ+−(t) = φ+−(∞)(1 − exp(−(1 + i(ωQ − ωR)τR)t/τR)) (10)
φ−+(t) = φ+−(∞)(1 − exp(−(1 − i(ωQ − ωR)τR)t/τR)). (11)

Furthermore we assume the resonant ωQ = ωR or nearly resonant such that |ωQ −ωR|τR � 1.
Hence we finally obtain the functions φ+−(t) and φ−+(t)

φ+−(t) = φ+−(∞)τRf ′(t) (12)
φ−+(t) = φ−+(∞)τRf ′(t) (13)

where f ′(t) = df (t)/dt and the function f (t) is given by

f (t) = t

τR

− 1 + e−t/τR (14)

which satisfies limτR→0 τRf ′(t) = 1 and limτR→0 τRf (t) = t . This result is equivalent to that
obtained when the thermal reservoir is a set of damped oscillators in the thermal equilibrium,
which will be discussed in appendix.

Substituting equations (12) and (13) into equation (3) and neglecting the small frequency
shift caused by the thermal reservoir, we obtain the non-Markovian quantum master equation
of a single qubit

∂

∂t
ρ̂(t) = 1 + 〈σ̂z〉eq

2T2
τRf ′(t)([σ̂+, ρ̂(t)σ̂−] + [σ̂+ρ̂(t), σ̂−])

+
1 − 〈σ̂z〉eq

2T2
τRf ′(t)([σ̂−, ρ̂(t)σ̂+] + [σ̂−ρ̂(t), σ̂+]) (15)

with

T −1
2 = Re[φ+−(∞) + φ−+(∞)] (16)

〈σ̂z〉eq = −tanh

(
h̄ωQ

2kBT

)
. (17)
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In the limit of τR → 0, equation (15) reduces to the well-known Markovian quantum master
equation of a single qubit with the transverse relaxation time T2 and the longitudinal relaxation
time T1 = T2/2.

To obtain the non-Markovian quantum channel of a qubit, we first calculate the average
values 〈σ̂±〉t = Tr[σ̂±ρ̂(t)] and 〈σ̂z〉t = Tr[σ̂zρ̂(t)] which are subject to the Bloch-like
equations from equation (15)

d

dt
〈σ̂±〉t = −τRf ′(t)

T2
〈σ̂±〉t (18)

d

dt
〈σ̂z〉t = −2τRf ′(t)

T2
[〈σ̂z〉t − 〈σ̂z〉eq] (19)

where we have ignored the angular frequency ωQ of the qubit since it does not affect purity
and entanglement of the qubit states. Then we find the solutions

〈σ̂±〉t = γt 〈σ̂±〉0 (20)
〈σ̂z〉t = γ 2

t 〈σ̂z〉0 +
(
1 − γ 2

t

)〈σ̂z〉eq (21)

where the parameter γt is given by

γt = e−(τR/T2)f (t). (22)

Any single qubit state ρ̂(t) at time t can be expressed in terms of 〈σ̂±〉t and 〈σ̂z〉t as

ρ̂(t) = 1
2 (1̂ + 〈σ̂−〉t σ̂+ + 〈σ̂+〉t σ̂− + 〈σ̂z〉t σ̂z). (23)

Hence the non-Markovian qubit channel L̂t defined by the relation ρ̂(t) = L̂t ρ̂(0) for any
initial state ρ̂(0) is determined by the relations

L̂t |0〉〈0| = 1
2

(
1 + γ 2

t

)|0〉〈0| + 1
2

(
1 − γ 2

t

)|1〉〈1| + 1
2

(
1 − γ 2

t

)〈σ̂z〉eq(|0〉〈0| − |1〉〈1|) (24)

L̂t |1〉〈1| = 1
2

(
1 − γ 2

t

)|0〉〈0| + 1
2

(
1 + γ 2

t

)|1〉〈1| + 1
2

(
1 − γ 2

t

)〈σ̂z〉eq(|0〉〈0| − |1〉〈1|) (25)

L̂t |0〉〈1| = γt |0〉〈1| (26)

L̂t |1〉〈0| = γt |1〉〈0| (27)

with σ̂z|0〉 = |0〉 and σ̂z|1〉 = −|1〉. We also obtain the Kraus form of the non-Markovian
quantum channel L̂t

L̂t X̂ = p0(t)X̂ +
∑

k=x,y,z

pk(t)σ̂kX̂σ̂k (28)

where p0(t), px(t), py(t) and pz(t) are given by

p0(t) = 1
4 (1 + γt )

2 + 1
4

(
1 − γ 2

t

)〈σ̂z〉eq (29)

px(t) = 1
4

(
1 − γ 2

t

)
[1 − 〈σ̂z〉eq] (30)

py(t) = 1
4

(
1 − γ 2

t

)
[1 − 〈σ̂z〉eq] (31)

pz(t) = 1
4 (1 − γt )

2 + 1
4

(
1 − γ 2

t

)〈σ̂z〉eq. (32)

In the limit of τR → 0, the parameter γt is replaced with e−t/T2 and the quantum channel L̂t

becomes the well-known Markovian quantum channel [9].
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3. Decay of purity and distinguishability of qubit states

This section investigates degradation of purity and distinguishability of qubit states under the
influence of the non-Markovian quantum channel L̂t given by equations (24)–(27). Purity of a
qubit state ρ̂(t) is evaluated by the linear entropy SL(ρ̂(t)) = 1 − Tr ρ̂2(t) which is expressed
in terms of the Bloch vector �a(t) of the quantum state ρ̂(t) as

SL(ρ̂(t)) = 1
2 (1 − |�a(t)|2). (33)

Since ρ̂(t) = L̂t ρ̂(0), the Bloch vector �a(t) is related to �a(0) by the relation

�a(t) = Lt �a(0) + �bt (34)

with

Lt =

γt 0 0

0 γt 0
0 0 γ 2

t


 �bt =


 0

0(
1 − γ 2

t

)〈σ̂z〉eq


 . (35)

If the initial state ρ̂(0) is pure and thus |�a(0)|2 = 1 is satisfied, we obtain

|�a(t)|2 = γ 2
t − γ 2

t

(
1 − γ 2

t

)
a2

z (0) + 2γ 2
t

(
1 − γ 2

t

)〈σ̂z〉eqaz(0) +
(
1 − γ 2

t

)〈σ̂z〉2
eq. (36)

When we take the average over all possible pure qubit states, we obtain ak(0) = 0 and
a2

k (0) = 1/3 (k = x, y, z). Then the averaged linear entropy SL(ρ̂(0)) for initial pure states
is given by

SL(ρ̂(0)) = 1
2

(
1 − γ 2

t

)[
1 + 1

3γ 2
t − (

1 − γ 2
t

)〈σ̂z〉2
eq

]
. (37)

We find from this equation that when 〈σ̂z〉2
eq � 1/3, the averaged linear entropy decreases

monotonously with time t while when 〈σ̂z〉2
eq > 1/3, it takes the maximum value at the time

tm which is determined by the relation

γ 2
tm

= 〈σ̂z〉2
eq − 1/3

〈σ̂z〉2
eq + 1/3

. (38)

The averaged linear entropy SL(ρ̂(t)) is plotted as the function of time t in figure 1. The
figure clearly shows that the non-Markovian effect suppresses the degradation of purity of
qubit states. In the case of 〈σ̂z〉eq = −1, we have SL(ρ̂(∞)) = 0 since ρ̂(∞) = |1〉〈1|.

Distinguishability or similarity between two quantum states ρ̂1 and ρ̂2 can be measured
by means of the fidelity

F(ρ̂1, ρ̂2) = [
Tr(

√
ρ̂1ρ̂2

√
ρ̂1)

1/2
]2

. (39)

For two qubit states which have the Bloch vectors �a1 and �a2, the fidelity can be expressed as

F(ρ̂1, ρ̂2) = 1
2 (1 + �a1 · �a2) + 1

2

√
(1 − |�a1|2)(1 − |�a2|2). (40)

Another measure of distinguishability between two quantum states is the average probability
of error in the optimum quantum measurement. The quantum detection theory provides [21]

Perror = 1
2 − 1

4‖ρ̂1 − ρ̂2‖1 (41)

where ‖X̂‖1 = Tr
√

X̂†X̂. For qubit states, we have

Perror = 1
2 − 1

4 |�a1 − �a2|. (42)

Since any two quantum states that satisfy ρ̂1ρ̂2 = 0 can be discriminated without error,
F(ρ̂1, ρ̂2) = 0 and Perror = 0 are obtained.
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Figure 1. Time-evolution of the averaged linear entropy SL(ρ̂(t)) for initial pure states, where
(a) 〈σ̂z〉eq = 0.0, (b) 〈σ̂z〉eq = −0.6, (c) 〈σ̂z〉eq = −0.8 and (d ) 〈σ̂z〉eq = −1.0. In each figure, the
solid line represents τR/T2 = 2.0, the dotted line τR/T2 = 1.0, the short dashed line τR/T2 = 0.5,
the dashed line τR/T2 = 0.2, and the dot-dashed line τR/T2 = 0.0 which corresponds to the
Markovian approximation.

We suppose that two qubit states at the initial time are |ψ1〉 = (|0〉 + |1〉)/√2 and
|ψ2〉 = |0〉, where σ̂x |ψ1〉 = |ψ1〉 and σ̂z|ψ2〉 = |ψ2〉. When 〈σ̂z〉eq = 1/2, the Bloch vectors
of the quantum states ρ̂k = L̂t |ψk〉〈ψk| (k = 1, 2) are given by

�a1 =

 γt

0
− 1

2 (1 − γ2)


 �a2 =


 0

0
− 1

2

(
1 + γ 2

t

)

 . (43)

Hence the fidelity F(ρ̂1, ρ̂2) and the average probability of error Perror becomes

F(ρ̂1, ρ̂2) = 1 − 1
4γ 2

t

(
1 + γ 2

t

)
(44)

Perror = 1
2 − 1

4γt

√
1 + γ 2

t (45)

which are plotted as the functions of time t in figure 2. It is seen from the figure that the non-
Markovian effect also suppresses the degradation of the distinguishability between quantum
states.
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Figure 2. Time-evolution of (a) the fidelity and (b) the average probability of error, where
〈σ̂z〉eq = −1/2. In each figure, the solid line represents τR/T2 = 2.0, the dotted line τR/T2 = 1.0,
the short dashed line τR/T2 = 0.5, the dashed line τR/T2 = 0.2, and the dot-dashed line
τR/T2 = 0.0 which corresponds to the Markovian approximation.

4. Decoherence of entanglement of qubits

In this section, we investigate the influence of the non-Markovian effect on the decoherence
of entanglement of the Bell states. For this purpose, we suppose that one of the two qubits in
the Bell states is sent through the non-Markovian quantum channel L̂t during time t. As the
result, we obtain the mixed Bell states

ρ̂
±(t) = (L̂t ⊗ Î)|
±〉〈
±| = 1
4 (1 ± γt )

2|
+〉〈
+| + 1
4 (1 ∓ γt )

2|
−〉〈
−|
+ 1

4

(
1 − γ 2

t

)
(|�+〉〈�+| + |�−〉〈�−|)

+ 1
4

(
1 − γ 2

t

)
(|
+〉〈
−| + |�+〉〈�−| + {h.c.}) (46)

ρ̂�±(t) = (L̂t ⊗ Î)|�±〉〈�±| = 1
4 (1 ± γt )

2|�+〉〈�+| + 1
4 (1 ∓ γt )

2|�−〉〈�−|
+ 1

4

(
1 − γ 2

t

)
(|
+〉〈
+| + |
−〉〈
−|)

+ 1
4

(
1 − γ 2

t

)
(|
+〉〈
−| + |�+〉〈�−| + {h.c.}) (47)

with |
±〉 = (|00〉 ± |11〉)/√2 and |�±〉 = (|01〉 ± |10〉)/√2. In these equations, {h.c.}
stands for the Hermitian conjugate of |
+〉〈
−| + |�+〉〈�−|. The concurrence C of a bipartite
state ρ̂ is given in terms of the eigenvalues λk (k = 1, 2, 3, 4) of R̂ = (

√
ρ̂ρ̂ ′√ρ̂)1/2 with

ρ̂ ′ = (σ̂y ⊗ σ̂y)ρ̂
∗(σ̂y ⊗ σ̂y) [22, 23]

C = max

[
0, 2 max

1�k�4
λk −

4∑
k=1

λk

]
. (48)

Note that λk (k = 1, 2, 3, 4) is equal to the square root of the eigenvalue of ρ̂ρ̂ ′ [23]. The
eigenvalues of the matrix R̂ with ρ̂
±(t) and ρ̂�±(t) are calculated to be

λ1,2 = 1
4

[√
(1 + γt )2 − 〈σ̂z〉2

eq

(
1 − γ 2

t

) ± 2γt

]
(49)

λ3,4 = 1
4

√
1 − 〈σ̂z〉2

eq

(
1 − γ 2

t

)
. (50)
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Figure 3. Decay of the entanglement of formation under the influence of the non-Markovian
quantum channel, where the entanglement is measured in ebits and 〈σ̂z〉eq = −1/2. In the
figure, the solid line represents τR/T2 = 2.0, the dotted line τR/T2 = 1.0, the short dashed
line τR/T2 = 0.5, the dashed line τR/T2 = 0.2, and the dot-dashed line τR/T2 = 0.0 which
corresponds to the Markovian approximation. The inset graph shows the concurrence in the same
parameters.

Using the results, we can obtain the concurrence Ct of the mixed Bell states given by
equations (46) and (47)

Ct = max
[
0, γt − 1

2

√
1 − 〈σ̂z〉2

eq

(
1 − γ 2

t

)]
. (51)

Then the entanglement of formation Et [22, 23, 26] of the mixed Bells states is given by

Et = H

(
1 +

√
1 − C2

t

2

)
(52)

where H(x) = −x log2 − (1−x) log2(1−x). The entanglement of formation is plotted as the
function of time t in figure 3. The figure shows that the entanglement decays most rapidly in
the Markovian approximation. As the correlation time τR of the reservoir variables is greater,
the entanglement survives longer.

It is found from equations (22) and (51) that the entanglement of the quantum states
ρ̂
±(t) and ρ̂�±(t) is completely destructed at the time te which is determined by the
relation

te

T2
− τR

T2
(1 − e−te/τR ) = ln




√
2 − 〈σ̂z〉2

eq + 1√
1 − 〈σ̂z〉2

eq


 . (53)

In the Markovian limit (τR → 0), this equation reduces to

t ′e
T2

= ln




√
2 − 〈σ̂z〉2

eq + 1√
1 − 〈σ̂z〉2

eq


 . (54)

This result implies that when t � te, the non-Markovian quantum channel L̂t becomes an
entanglement-breaking channel [24, 25]. Furthermore we find that te → ∞ at 〈σ̂z〉2

eq → 1.
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This indicates that nonzero temperature of the thermal reservoir is indispensable for the non-
Markovian quantum channel to be entanglement-breaking. From equations (53) and (54), we
obtain the relation

te − τR(1 − e−te/τR ) = t ′e (55)

which provides the inequality te > t ′e. The non-Markovian effect makes longer the time
after which the non-Markovian quantum channel L̂t becomes entanglement-breaking. The
inequality te > t ′e together with equation (54) yields

te > t ′e > T2. (56)

When the transverse relaxation time T2 of the qubit is large in comparison with the correlation
time τR of the reservoir variables, we can obtain the approximated relation te − t ′e ≈ τR .
In this case, the time at which the entanglement disappears is made larger by τR due to the
non-Markovian effect.

5. Fidelity of qubit states in quantum teleportation

We now consider the quantum teleportation of qubit states [27] under the influence of the
non-Markovian quantum channel. We suppose that a sender, Alice, sends to a receiver, Bob,
one of the two qubits in the Bell state |
+〉 through the non-Markovian quantum channel L̂t to
share the entanglement with him, where t represents the transmission time of the qubit. In this
case, Alice and Bob share the mixed Bell state ρ̂
+(t) given by equation (46). When Alice
teleports an arbitrary qubit state ρ̂ in to Bob, where the standard protocol is applied, he can
obtain the quantum state ρ̂out in average [28]

ρ̂out = P0ρ̂ in + Pxσ̂xρ̂ inσ̂x + Pyσ̂yρ̂ inσ̂y + Pzσ̂zρ̂ inσ̂z (57)

where P0, Px, Py and Pz are given by

P0 = 〈
+|ρ̂
+ |
+〉 = 1
4 (1 + γt )

2 (58)

Px = 〈�+|ρ̂
+ |�+〉 = 1
4

(
1 − γ 2

t

)
(59)

Py = 〈�−|ρ̂
+ |�−〉 = 1
4

(
1 − γ 2

t

)
(60)

Pz = 〈
−|ρ̂
+ |
−〉 = 1
4 (1 − γt )

2. (61)

Since we can express any qubit state as ρ̂ in = (1/2)(1̂ +axσ̂x +ayσ̂y +azσ̂z), the quantum state
that Bob can get in average becomes

ρ̂out = 1
2

(
1̂ + γtaxσ̂x + γtayσ̂y + γ 2

t ax σ̂x

)
. (62)

Thus the quantum teleportation with the standard protocol is equivalent to the transformation
of the Bloch vector �a = (ax, ay, az)

T of ρ̂ in

�a −→ Lt �a (63)

with

Lt =

γt 0 0

0 γt 0
0 0 γ 2

t


 . (64)

We obtain the fidelity Ft = [Tr(
√

ρ̂ inρ̂out
√

ρ̂ in)
1/2]2 to investigate how faithfully the

quantum state ρ̂ in is teleported from Alice to Bob. The fidelity Ft can be expressed in terms
of the Bloch vector â

Ft = 1
2 (1 + �a · Lt �a) + 1

2

√
(1 − |�a|2)(1 − |Lt �a|2). (65)
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Figure 4. Dependence of the averaged fidelity F̄ t on the transmission time t. In the figure, the
solid line represents τR/T2 = 2.0, the dotted line τR/T2 = 1.0, the short dashed line τR/T2 = 0.5,
the dashed line τR/T2 = 0.2, and the dot-dashed line τR/T2 = 0.0 which corresponds to the
Markovian approximation.

In particular, when the quantum state ρ̂ in is pure (|�a| = 1), the fidelity Ft becomes

Ft = 1
2 (1 + γt ) − 1

2γt (1 − γt )|az|2. (66)

When we take the average of the fidelity Ft over all possible pure qubit states, the averaged
fidelity F̄ t is given by

F̄ t = 1
6

(
3 + 2γt + γ 2

t

)
(67)

where we have used |az|2 = 1/3. The averaged fidelity F̄ t is plotted as the function of the
transmission time t in figure 4. In the classical teleportation, the upper bound on the averaged
fidelity is 2/3. Then the condition under which the quantum teleportation works well under
the influence of the non-Markovian quantum channel is given by

γt >
√

2 − 1. (68)

It is easy to see from equations (51) and (52) that the condition is equivalent to the concurrence
(or equivalently the entanglement of formation) of the quantum state ρ̂
+(t) shared by Alice
and Bob, which is greater than zero in the case of 〈σ̂z〉eq = 0, that is, Ct |〈σ̂z〉eq=0 > 0 and
Et |〈σ̂z〉eq=0 > 0. It is important to note that 〈σ̂z〉eq = 0 corresponds to the infinite temperature
(T → ∞) of the thermal reservoir (see equation (17)). By making use of the concurrence
Ct |〈σ̂z〉eq=0, the averaged fidelity F̄ t can be expressed as

F̄ t = 2 + Ct |〈σ̂z〉eq=0

3
(69)

which implies that the entanglement always makes the averaged fidelity greater than that of
the classical teleportation.

6. Capacity of quantum dense coding system

This section considers classical information transmission in the quantum dense coding system
of qubits [29] under the influence of the non-Markovian quantum channel. Taking into account
of the entanglement distillation [30], we may assume that Alice and Bob can share the Bell
state |
+〉 even if there is a noisy environment. Hence we suppose that Alice and Bob share
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the Bell state |
+〉. Alice encodes two bits of classical information by applying the one of four
operators 1̂, σ̂z, σ̂x and σ̂y to her qubit. Then Alice sends the encoded qubit to Bob through the
non-Markovian quantum channel L̂t , where t stands for the transmission time of the encoded
qubit. After receiving it, Bob obtains one of the four two-qubit states ρ̂
±(t) and ρ̂�±(t) given
by equations (46) and (47). Since the Holevo capacity [31, 32] is attained when the prior
probabilities of two bits of classical information are equal [33], we obtain the Holevo capacity
CH of the quantum dense coding system

CH = S


1

4

∑
k=
±,�±

ρ̂k(t)


 − 1

4

∑
k=
±,�±

S(ρ̂k(t)) (70)

where S(ρ̂) = −Tr[ρ̂ log ρ̂]. Substituting equations (46) and (47) into this equation and
calculating the von Neumann entropies, we find that the Holevo capacity CH is given by

CH = − 1
2

[
1 +

(
1 − γ 2

t

)〈σ̂z〉eq
]

log
[
1 +

(
1 − γ 2

t

)〈σ̂z〉eq
]

− 1
2

[
1 − (

1 − γ 2
t

)〈σ̂z〉eq
]

log
[
1 − (

1 − γ 2
t

)〈σ̂z〉eq
]

+ 1
2

(
1 − γ 2

t

)
log

(
1 − γ 2

t

)
+ 1

4

(
1 − γ 2

t

)
(1 + 〈σ̂z〉eq) log(1 + 〈σ̂z〉eq)

+ 1
4

(
1 − γ 2

t

)
(1 − 〈σ̂z〉eq) log(1 − 〈σ̂z〉eq)

+ 1
4

[
1 + γ 2

t +
√

(2γt )2 +
(
1 − γ 2

t

)〈σ̂z〉2
eq

]
× log

[
1 + γ 2

t +
√

(2γt )2 +
(
1 − γ 2

t

)〈σ̂z〉2
eq

]
+ 1

4

[
1 + γ 2

t −
√

(2γt )2 +
(
1 − γ 2

t

)〈σ̂z〉2
eq

]
× log

[
1 + γ 2

t −
√

(2γt )2 +
(
1 − γ 2

t

)〈σ̂z〉2
eq

]
. (71)

In particular, when 〈σ̂z〉eq = 0, the Holevo capacity is simplified as

CH|〈σ̂z〉eq=0 = (1 + γt ) log(1 + γt ) + (1 − γt ) log(1 − γt ). (72)

The Holevo capacity CH is plotted as the function of the transmission time t of the encoded
qubit in figure 5. The figure shows that the non-Markovian effect suppresses the decay of the
classical information capacity of the quantum dense coding system.

When Bob extracts the classical information encoded by Alice from the received state by
means of the Bell-state measurement, the channel matrix of the quantum dense coding system
is given by

Pt = 1
4




(1 + γt )
2 (1 − γt )

2 1 − γ 2
t 1 − γ 2

t

(1 − γt )
2 (1 + γt )

2 1 − γ 2
t 1 − γ 2

t

1 − γ 2
t 1 − γ 2

t (1 + γt )
2 (1 − γt )

2

1 − γ 2
t 1 − γ 2

t (1 − γt )
2 (1 + γt )

2


 (73)

which provides the Shannon mutual information

IBell = (1 + γt ) log(1 + γt ) + (1 − γt ) log(1 − γt ). (74)

Then we find from equation (72) that the following equality holds

CH|〈σ̂z〉eq=0 = IBell. (75)

This result means that the quantum block-coding and collective decoding [34–36] do not
work for the super-additivity of the mutual information when the temperature of the thermal
reservoir is infinite (T → ∞ or equivalently 〈σ̂z〉eq = 0).
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Figure 5. The Holevo capacity CH of the quantum dense coding system, where 〈σ̂z〉eq = −1/2
and the information is measured in bits. In the figure, the solid line represents τR/T2 = 2.0, the
dotted line τR/T2 = 1.0, the short dashed line τR/T2 = 0.5, the dashed line τR/T2 = 0.2, and the
dot-dashed line τR/T2 = 0.0 which corresponds to the Markovian approximation.

7. Concluding remarks

In this paper, we have investigated the decoherence of quantum information of qubits under the
influence of the non-Markovian quantum channel which is derived from the system–reservoir
model by eliminating reservoir variables by means of the projector operator method in the time-
convolutionless formalism, where the correlation time of the reservoir variables is assumed
to take a finite value. We have evaluated the degradation of purity, distinguishability and
entanglement of qubit states and we have found that the non-Markovian effect suppresses their
degradation. Furthermore we have investigated the quantum teleportation and the quantum
dense coding of qubits under the influence of the non-Markovian quantum channel. To show
how faithfully a qubit state is teleported, we have calculated the average fidelity between the
teleported state and the original state. We have found that the entanglement shared by the
sender and receiver makes the fidelity greater than that obtained for the classical teleportation
and the non-Markovian effect improves the performance of the quantum teleportation. In
the quantum dense coding, we have calculated the Holevo capacity and compared it with the
Shannon mutual information obtained in the case that the receiver performs the Bell-state
measurement to extract the classical information encoded by the sender. The non-Markovian
effect also improves the Holevo capacity. We have found that the Holevo capacity becomes
equal to the Shannon mutual information when the temperature of the thermal reservoir is
infinite. In this paper, we have confined ourselves to focusing our attention on qubit systems.
Continuous variable quantum information under the influence of the non-Markovian quantum
channel will be considered elsewhere.

Appendix. Correlation functions of reservoir variables

This appendix derives equations (12) and (13) by making use of the microscopic model of
the thermal reservoir. When the thermal reservoir is a set of bosonic oscillators, the reservoir
variable R̂ appeared in equations (4) and (3) is given by λR̂ = ∑

k λkâk , where âk is the
bosonic annihilation operator of the kth mode. Since the thermal reservoir is in the thermal
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equilibrium state, we obtain the functions φ+−(t) and φ−+(t)

φ+−(t) =
∑

k

λ2
k

∫ t

0
dτ e−iωQτ

〈
â
†
k(τ )âk(0)

〉
eq (A.1)

φ−+(t) =
∑

k

λ2
k

∫ t

0
dτ eiωQτ

〈
âk(τ )â

†
k(0)

〉
eq. (A.2)

We assume here that the time-evolution of the bosonic oscillators of the thermal reservoir is
subject to the quantum master equation. In other word, they are assumed to be the damped
oscillators. In this case, when the initial state of the damped oscillators is the thermal
equilibrium state with temperature T, we can obtain the correlation functions〈

âk(t)â
†
k(0)

〉
eq = (n̄k + 1) e−iωkt−t/τk (A.3)〈

â
†
k(t)âk(0)

〉
eq = n̄k e−iωkt−t/τk (A.4)

where n̄k = (eh̄ωk/kBT − 1)−1. In these equations, ωk and τk are the frequency and decay
time of the k-mode of the damped oscillator. Substituting equations (A.3) and (A.4) into
equations (A.1) and (A.2), we obtain the functions φ+−(t) and φ−+(t)

φ+−(t) =
∑

k

λ2
kn̄kτk

1 − exp(−(1 + i(ωQ − ωk)τk)t/τk)

1 + i(ωQ − ωk)τk

(A.5)

φ−+(t) =
∑

k

λ2
k(n̄k + 1)τk

1 − exp(−(1 − i(ωQ − ωk)τk)t/τk)

1 − i(ωQ − ωk)τk

. (A.6)

Let us introduce the spectral density D(ω) of the thermal reservoir by the relation

D(ω) = 1

π

∑
k

λ2
kτkδ(ω − ωk). (A.7)

Then the functions φ+−(t) and φ−+(t) can be expressed as

φ+−(t) = π

∫
dωD(ω)n̄(ω)

1 − exp(−(1 + i(ωQ − ω)τ(ω))t/τ (ω))

1 + i(ωQ − ω)τ(ω)
(A.8)

φ−+(t) = π

∫
dωD(ω)[n̄(ω) + 1]

1 − exp(−(1 − i(ωQ − ω)τ(ω))t/τ (ω))

1 − i(ωQ − ω)τ(ω)
. (A.9)

If the spectral density D(ω) has a very sharp peak around the transition frequency ωQ of the
qubit, that is, D(ω) ≈ Dδ(ω − ωQ), we obtain

φ+−(t) = πDn̄(ωQ)(1 − e−t/τR ) (A.10)

φ−+(t) = πD[n̄(ωQ) + 1](1 − e−t/τR ) (A.11)

which are equal to equations (12) and (13). In these equations, we put τR = τ(ωQ). Another
model of the thermal reservoir that yields equations (12) and (13) has been considered in [14].
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